Test LEDs with a Coin Cell Battery

The battery (CR2450) in my garage door sensor was getting low, so I replaced it. I’ll keep the old one in my electronics kit for LED testing, as shown in this video. Touch the longer leg (anode) of the LED to + and the shorter leg (cathode) to . Usually + is the top of the battery where the words are. Don’t worry, you won’t hurt the LED if you connect it the wrong way.

Combining 74HC74 & 555 Integrated Circuits

After working with some basic 74HC74 and 555 circuits, it was time to get fancy. I replaced one of the button triggers from my 74HC74 circuit with a 555 timer delay.


Then I replaced the other button with a 555 timer delay as well.


What do you think happens if I swap out the 22 μF capacitors for 4.7 μF? Remember the capacitor charge time formula from the 555 post? Multiply the capacitance (farads) by the resistance (ohms) to get the time. I’m still using the same 100 K ohm resistors.

t = RC

100000 * 0.0000047 = 0.47

So the delay decreases from 2.2 seconds to 0.47.

There is really no point in the 74HC74 here. You can connect two 555s to each other for a similar result. The video shows a double 555 circuit with 3 different timings, where I swap the capacitors from 22 μF to 4.7 μF and then 1 μF (delay of 0.1 second).


Are there any other circuits I should try with the 74HC74 and/or 555?

Using a 555 Integrated Circuit


555 Pins

I posted about the 74HC74 flip-flop on Saturday. For the same project I’m going to use that IC for, I’ll probably use a 555 timer. It’s often referred to as one of the most useful ICs you can get. I’ve never used the 555 either, so I wired up some simple demos using it. In order to show two common timing uses, I’ve created similar circuits each triggered by the same power source and button.

The circuit on the left shows a delay off timer and the one on the right shows a delay on timer. Notice when power is connected (or the button is used as a reset) that the red LED turns on right away and turns off after a few seconds. Just the opposite, the white LED is off when the timer is reset and turns on after a few seconds.

The length of the delays is determined by the capacitor and resistor used with the 555. I’m using an Adafruit Feather to provide 3.3 volts to the circuits with a 22 μF capacitor and 100 K ohm resistor. Using the capacitor charge time formula to multiply the capacitance (farads) by the resistance (ohms), it’s easy to get the time.

t = RC

t = 100000 * 0.000022

Comes out to 2.2 seconds. To change the time delay all you have to do is use a different capacitor and/or resistor.

Here is a simplified wiring setup because it’s hard to see how everything is connected in the video.


Also check out Combining 74HC74 & 555 Integrated Circuits.

Using a 74HC74 Integrated Circuit


74HC74 Pins

I received some advice to use a 74HC74 flip-flop for a project idea I’ve had. I’ve never used an integrated circuit so I thought a good first step was to put together a very simple demo I could hack around with it. This IC is big enough it actually provides two flip-flops, one on each side as you can see from the pin diagram on the right. Both sides work the same, but are completely independent other than sharing power and ground. I’m only using the first side for this example.


As I press the buttons connected to CLR and PRE, you can see the outputs (Q and not Q) alternate. I’ve set the data (D) and clock (CLK) pins to ground. The truth table for the 74HC74 comes in handy to understand what’s going on.


Here is a simplified wiring setup because it’s hard to see how everything is connected in the video.


Also check out Combining 74HC74 & 555 Integrated Circuits.